翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Audio quality measurement : ウィキペディア英語版
Audio system measurements

Audio system measurements are made for several purposes. Designers take measurements so that they can specify the performance of a piece of equipment. Maintenance engineers make them to ensure equipment is still working to specification, or to ensure that the cumulative defects of an audio path are within limits considered acceptable. Some aspects of measurement and specification relate only to intended usage. Audio system measurements often accommodate psychoacoustic principles to measure the system in a way that relates to human hearing.
== Subjectivity and frequency weighting ==
Subjectively valid methods came to prominence in consumer audio in the UK and Europe in the 1970s, when the introduction of compact cassette tape, dbx and Dolby noise reduction techniques revealed the unsatisfactory nature of many basic engineering measurements. The specification of weighted CCIR-468 quasi-peak noise, and weighted quasi-peak wow and flutter became particularly widely used and attempts were made to find more valid methods for distortion measurement.
Measurements based on psychoacoustics, such as the measurement of noise, often use a weighting filter. It is well established that human hearing is more sensitive to some frequencies than others, as demonstrated by equal-loudness contours, but it is not well appreciated that these contours vary depending on the type of sound. The measured curves for pure tones, for instance, are different from those for random noise. The ear also responds less well to short bursts, below 100 to 200 ms, than to continuous sounds〔Moore, Brian C. J., ''An Introduction to the Psychology of Hearing'', 2004, 5th ed. p137, Elsevier Press〕 such that a quasi-peak detector has been found to give the most representative results when noise contains click or bursts, as is often the case for noise in digital systems.〔BBC Research Report EL17, ''The Assessment of Noise in Audio Frequency Circuits'', 1968.〕 For these reasons, a set of subjectively valid measurement techniques have been devised and incorporated into BS, IEC, EBU and ITU standards. These methods of audio quality measurement are used by broadcast engineers throughout most of the world, as well as by some audio professionals, though the older A-weighting standard for continuous tones is still commonly used by others.〔(Expert center glossary )〕
No single measurement can assess audio quality. Instead, engineers use a series of measurements to analyze various types of degradation that can reduce fidelity. Thus, when testing an analogue tape machine it is necessary to test for wow and flutter and tape speed variations over longer periods, as well as for distortion and noise. When testing a digital system, testing for speed variations is normally considered unnecessary because of the accuracy of clocks in digital circuitry, but testing for aliasing and timing jitter is often desirable, as these have caused audible degradation in many systems.
Once subjectively valid methods have been shown to correlate well with listening tests over a wide range of conditions, then such methods are generally adopted as preferred. Standard engineering methods are not always sufficient when comparing like with like. One CD player, for example, might have higher measured noise than another CD player when measured with a RMS method, or even an A-weighted RMS method, yet sound quieter and measure lower when 468-weighting is used. This could be because it has more noise at high frequencies, or even at frequencies beyond 20 kHz, both of which are less important since human ears are less sensitive to them. (See noise shaping.) This effect is how Dolby B works and why it was introduced. Cassette noise, which was predominately high frequency and unavoidable given the small size and speed of the recorded track could be made subjectively much less important. The noise sounded 10 dB quieter, but failed to measure much better unless 468-weighting was used rather than A-weighting.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Audio system measurements」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.